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Abstract. The solvus phase boundaries of the Co-Cu system were recalculated by taking into 
account the effect of copper on the magnetic free energy of cu-Co. It was confirmed that the 
solubility of copper in a-CO is significantly lowered owing to the magnetic ordering energy 
below the Curie temperature Tc and there is an anomaly in the Arrhenius plot of solubility. 
The precision lattice parameter determination by x-ray diffractometry and the intrinsic 
coercivity H,, measurement by SQUID were performed and the calculated results were justi- 
fied. Two different thermodynamic treatments of magnetic free energy were also compared 
in this study. 

1. Introduction 

The influence of magnetism on the phase stability was first pointed out by Zener [l]. He 
explained the abnormal shape of a y-phase field curve in the Fe-Cr system as due to the 
magnetic ordering of iron. There were many such studies extending his idea and dividing 
the thermodynamic functions into magnetic and non-magnetic parts [2-6]. Nishizawa 
and co-workers [7,8] have given a detailed description of the functions of magnetic free 
energy and succeeded in calculating the phase diagrams by considering the magnetic 
energy. 

Another treatment of magnetic energy was presented by Hillert et a1 [9]. They 
correlated the magnetic free energy of alloys to the magnetic moment and Curie tem- 
perature Tc of each element. Later, Chuang et a1 [lo-121 gave a simpler formulation of 
magnetic free energy and calculated the Fe-X binary phase diagrams. 

Calculation of the Co-Cu phase diagram using the formulation of Nishizawa and co- 
workers has been carried out [SI. However, there are still some discrepancies between 
the experimental and calculated results of solubility curves in the Co-rich region. In 
order to reanalyse the solubility of Cuin &-CO, themagnetic free energy wasincorporated 
into the calculation of the solubility using the formulation proposed by Chuang et a1 [lo], 
and experiments were also carried out to justify the calculated solubility in this study. 
By adopting the same interaction parameters, calculations were also made using the 
formulation of Nishizawa and co-workers to compare the difference between both 
theoretical treatments of magnetic free energy [S, 101. 
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2. Expression of Gibbs free energy 

It has been shown [ 1-4,7] that the Gibbs free energy of a solution is separable into non- 
magnetic and magnetic terms, namely 

G = [GINM + [GIMag. (1) 
In the case of the CO-Cu system, the non-magnetic component of the Gibbs free 

energy is described as follows, using a subregular solution model: 

[GINM = [OGCO]NM(~ - xCu) + [oGCulNMXCu + 'dG + eXGNM (2) 
where Xcu is the mole fraction of Cu, and idG and eXCNM are the ideal mixing energy and 
the excess mixing energy, respectively. The non-magnetic free energy relative to the 
mechanical mixture of components CO and Cu in the equilibrium state is 

where A and B are the interaction parameters in a subregular solution and R is the gas 
constant. 

The magnetic free energy can be written as 

GMag = [OGCoIMag(l - x C u >  + ['GCu]MagXCu + eXGMag (4) 
where eXGMag is the magnetic free energy relative to the mixture of components CO and 
Cu in the equilibrium magnetic state. For a phase diagram calculation, it is convenient 
to use the completely paramagnetic standard state, as was done in previous papers 
[8,11,12], because the experimental data at higher temperatures (especially at tem- 
peratures much higher than the Curie temperature) are more trustworthy than those at 
lower temperatures. Thus the magnetic free energy is reformulated as 

GMag = ['GCoIMag(1 - Xcu> + ['GCuIMagXCu + exGcpm-teqm ( 5 )  
where exGcPm+eqm is the magnetic excess free energy of the equilibrium state relative to 
the mixture of components CO and Cu in the completely paramagnetic state. The total 
free energy of mixing relative to the completely paramagnetic state is as follows: 

AG = RT[(1 - Xcu) ln(1 - Xx) + Xx In Xx] 

+ XcU(l - Xc,)[A + B(l - 2Xcu)] + exGcpm+eqm. (6) 
According to Chuang et a1 [lo], the magnetic free energies are expressed by the 

following equations: 

-[KpTc/(~p>*l expl8(1 - T/Tc)I T S  Tc (7) 

-[KpTC/(8p)21(1 + 8P) + (Kd4 + Kp/8P)T [ -(KJc/16){3 + exp[-4(1 - T/Tc)I) T S  Tc (8) 

exGcpm+eqm = 

with p = 2 for the FCC lattice. The quantities Kf and Kp are related to the saturation 
magnetisation of the alloys as 

Kf = {4(1 - fs)/[l - exp(-4)]}CR In(@ + 1) 
K ,  = 8fsCR In(@ + 1) 

(9) 

(10) 
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where fs = 0.105 for the FCC lattice [lo], C is the empirical factor and P is the mean 
magnetic moment per atom. Tc, C and p are expressed as linear functions of the 
concentration Xcu: 

Tc = 1394 - 747Xcu (11) 

In this study, Ccu is taken as unity and Pcu as zero. The magnetic moment Pco of CO, is 
taken as 1.75 and CcO as 0.634 [lo]. 

3. Calculation of mutual solubility in the Co-Cu binary system 

The criteria for the phase equilibrium between a-CO and E-CU are given as 

PunCO = PE0 (14a) 

PE" = P E U .  (14b) 
The chemical potentials can be obtainedfrom equation (6). For the calculation of mutual 
solubility, we use the same function to represent the Gibbs free energy of a-CO and 
E-CU phases with the same crystal structure. The criteria for equilibrium can be 
reformulated as 

P C O  (XCU, 1 1 = PCO (Xcu.2) (15a) 

PCU(XCU,l) = PCU(XC",2). (15b) 
The concentrations Xcu,l and XCu,* of mutual solubility in the Co-Cu alloy and the 
interaction parameters A and B can be obtained from the above equations with two 
variables known at a fixed temperature. 

4. Experimental procedures 

The Co-Cu alloys with 2, 5 ,  7.5, 8.5, 10 and 12 at.% Cu were prepared by arc melting 
in a cold copper hearth under an argon atmosphere. After melting, the alloys were 
sealed in evacuated quartz tubes and heat treated by the following procedures: 

(i) homogenisation and solution treatment at 1403 K for 168 h, followed by brine 
quenching by breaking the quartz tubes; 

(ii) isothermal aging under argon protection at 1273,1313,1333 or 1373 K for 2 h. 

The samples were then studied by x-ray diffractometry (XRD) to measure the lattice 
constant which is a function of the solute concentration Xcu. The XRD patterns were 
obtained from a diffractometer with filtered monochromatic Cu K a l  radiation at 45 kV 
and 25 mA, using a step-scan method with a sampling width of 0.002". 'Primary' lattice 
constants were calculated using the { l l l ) ,  (200) and (311) diffractions from the Miller 
indices and measured angles. The calculated values were plotted against the function 
f =  (cos2 8 ) / 8  + (cosz B)/sin 8 and then extrapolated to f = 0 (28 = B O " ) ,  where a 
precise lattice constant was obtained. A silicon powder was incorporated in the sample 
to correct the device errors in diffraction peaks. 
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Figure 1. The calculated Cu solubility (-, this 
work; this work, no G,,,) and those from 
[13] (-) in a-CO of the Cc-Cu system. 

The samples were also examined using a superconducting quantum interference 
device (SQUID) to measure the magnitude of the intrinsic coercivity and then to confirm 
the precipitation of the Cu-rich phase. The heat-treated samples were cut to rods with 
a length-to-width ratio of greater than 10 with a slow-speed diamond saw cutter and then 
stress relieved at 473 K. To detect the coercivity, the rod samples were first magnetised 
under a 30 000 G field, followed by demagnetisation and reverse magnetisation. 

5. Results and discussion 

5.1. Mutual solubility calculation 

The coefficients A l ,  A2,  B1 and B2 of the interaction parameters A and B in equation 
(3) were taken as linear functions of temperature: 

A = A ,  +A,T (16a) 
B = B1 + B2T. (16b) 

These coefficients were evaluated by means of a linear regression, using the con- 
centration values of mutual solubilities taken from the high-temperature portion (tem- 
perature higher than the Curie temperature) of the phase diagram [ 131. The coefficients 
thus obtained are as follows: 

A = 48570 - 12.60T 

B = -4721 + 1.845T. 
(17a) 

(17b) 
The copper solubility in an a-CO solid solution of the Co-Cu system was calculated 

by considering the magnetic free energy using equations (6)  and (7) and is shown in 
figure 1. Figures 2 and 3 show the Arrhenius plots of the solid state mutual solubility. 
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Figure 2. The Arrhenius plot of the calculated Cu 
solubility (0) and those listed in [13] (0, [8]; A, 
[14]; X,  [15]) in a-CO of the CO-Cu system. 

Figure 3. The Arrhenius plot of the calculated CO 
solubility (0) and those listed in [13] ( X ,  [8]; +, 
[15]; 0, [ 161; 0 [17]) in F-Cuof the CO-Cu system. 

Assuming that the alloys were all in a hypothetical, completely paramagnetic state 
throughout the target temperature range, the mutual solubility obtained by removing 
the magnetic free energy are shown as broken curves in figures 1-3 from the results of 
other investigators [13]. 

It is obvious that the relation between solubility calculated by considering the mag- 
netic free energy and temperature no longer obeys the Arrhenius equation at tem- 
peratures near the Curie temperature. Such an anomaly is manifestly due to the magnetic 
transition which is as significant in this study as that observed by Nishizawa and co- 
workers, who used different formulation for the magnetic free energy. The mutual 
solubility is lowered because of the introduction of the magnetic free energy. This is 
shown in figure 1 as a solvus line protruding towards the CO-rich end, with respect to the 
line (broken curve) obtained by neglecting the magnetic free energy. 

Figure 4 shows the AGversus Xcurves of the CO-Cu system at 1323 K. The magnetic 
free energy eXG,ag is the largest at an infinitely small amount of Cu and is reduced by the 
addition of Cu, as shown in figure 4(a) .  Figure 4(b )  shows the effect of incorporating 
AG,,, into AGNM, leading to a decreased total Gibbs free energy AGt. It is obvious that 
the effect of adding Cu is great at low concentrations, leading to a reduced mutual 
solubility at'the CO-rich end. It can be negligible at high Cu concentrations, e.g. for 
X,, > 0.3. This is typical of ferromagnetic M-X binary alloys (M represents a ferro- 
magnetic element and X a non-magnetic element). 

The magnetic moment and Curie temperature of the ferromagnetic element M are 
altered by the amount of solid solution of the non-magnetic element X. These two factors 
should be taken into account in discussing the influence of the non-magnetic element on 
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Figure 4. The AG versus X curves of the Cc-Cu system at 1323 K: (a)  the dependence of 
magnetic free energy on the Cu concentration; ( b )  total free energy 6, (-), magnetic free 
energy GMag (-) and non-magnetic free energy GNm (- - -). 

the magnetic free energy. Chang et a1 [lo] considered the magnetic free energy of the 
solid solution to be similar to that of the pure ferromagnetic element (equation (6)) 
except for the solute concentration dependence of the magnetic entropy, the magnetic 
moment p, the constant C and the Curie temperature T,, as listed in equations 
(8)-(12). The influence of the non-magnetic element on the magnetic free energy is then 
correlated quantitatively to p, C and Tc. 

The ferromagnetic free energy relative to the fully uncoupled magnetic spin state 
(i.e. completely paramagnetic state) can be treated differently, as in [8]: 

GMag = (1 - mXxX> oG(T')M,Mag (18a) 
(18b) 

ex 

T'  = T - ATxXx 
where ATx is the slope of the Curie temperature in the M-X solid solution. eXGMag is 
taken as zero at temperatures much higher than T,. oG(T')M,Mag in equation (18a) is the 
modified magnetic free energy corresponding to the Curie temperature change. The 
influence of the non-magnetic element on the magnitude of the magnetic free energy is 
described by mx in equation (18a), which must be evaluated from the concentration 
dependence of the magnetic entropy in the M-X solid solution. Since the values of mx 
are still unknown because of the lack of sufficient experimental data, they are, for 
simplicity, taken as zero for the non-magnetic element and unity for the magnetic 
element. 

The solubilities calculated by incorporating magnetic free energy into total free 
energy using the above two thermodynamic treatments have very similar values and 
asymmetric characteristics. This arises from the same considerations of concentration 
dependence and subregular solution model. It is also worthwhile to note that, although 
the solubility obtained with treatment used by Chuang et a1 is slightly higher than that 
obtained with the treatment used by Nishizawa and co-workers because of the different 
treatments of the concentration dependency, this difference is very small and can even 
be negligible. However, the formulation of magnetic free energy by Chuang et a1 seems 
to be thermodynamically more rational and more easily realised than that of Nishizawa 
and co-workers. Nevertheless, the latter is simpler for computer calculation. In this 
study, calculation of the mutual solubility (miscibility gap) of the Co-Cu system, con- 
sidering the magnetic free energy with the interaction parameter coefficients obtained 
by Nishizawa et a1 [ 181, was also carried out, where 

A = 49400 - 13.26T 
B = -3675 + 1.03T. 

(19a) 
(19b) 
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The calculated solubility is approximately the same as that calculated with the coefficients 
obtained in this study. 

5.2. Determination of solubility by experiments 

The copper concentrations of the CO-Cu alloys in this study were between 2 and 12 at, % . 
The lattice constant measurement was made on the quenched sample after isothermal 
aging at temperatures ranging from 1173 to 1373 K. The lattice constant of each sample 
depends on the solubility. Figure 5 shows that the lattice constant is approximately a 
linear function of copper concentration in the CO-Cu alloys. The relation obeys Vegard’s 
rule as evidenced from the measured data of the solution-treated single-phase alloys in 
the present work. The solubility limit was determined by converting the measured lattice 
constant of each alloy to the solute concentration by using the Vegard plot (figure 5 ) .  

The measured lattice constants and the corresponding solute concentrations are 
shown in table 1 with the thermodynamically calculated solubilities for comparison. The 
solubilities of the quenched alloys approximately coincide with the calculated values, 
although deviation is quite large owing to the limited precision of our x-ray facility. 

The intrinsic coercivity Hci of the alloys is a structure-sensitive property. The intrinsic 
coercivity of a single-phase ferromagnetic CO-Cu alloy is greatly increased by the 
precipitation of a second phase and this enables verification of the calculated solvus to 
be made. The intrinsic coercivity of the quenched samples is listed in table 2. For 
comparison, the thermodynamically calculated solubilities are also shown in table 2. It 
is obvious that the intrinsic coercivity of the samples quenched from the two-phase 
region is several times higher than those from the single-phase region of the a-CO 
solid solution. The experimental results of coercivity measurement agree well with the 
calculated solvus curve. There is an anomaly that the coercivity of the 10 at. % Cu alloy 
aged at 1333 K is greater than that of the same alloy aged at 1313 K, while the proportion 
of the second phase in the latter sample should be greater. This was probably due to two 
possibilities: 

(i) higher residual stress in the former due to cutting; 
(ii) the precipitates in the latter case which might grow much larger owing to earlier 

nucleation (arising from greater undercooling) compared with the former, and hence a 
lower pinning force on the domain wall in the latter case. 
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Table 2. The intrinsic coercivity H,, of the alloys aged at 1333 and 1313 K.  

Intrinsic coercivity (Oe) 
Aging for the following alloy Cu contents Calculated Cu 
temperature solubility 
(K) 7 .5a t .% 8 .5a t .% lO.Oat.% (at.%) 

1333 11.5 18.0 45.0 10.0 
1313 13.5 21.0 38.5 8.9 

6. Conclusions 

The CO-rich end solvus of the CO-Cu binary system was recalculated by taking into 
account the effect of copper on the magnetic free energy. It was found that the solubility 
of copper in a-CO is lowered as manifested by the anomaly of the calculated Arrhenius 
plot. The results calculated using the treatments of Nishizawa and co-workers and of 
Chuang et a1 of magnetic free energy (using the same interaction parameters) led to 
similar asymmetric properties of mutual solubilities. However, the calculated solubility 
with the theoretical treatment of Chuang et a1 is slightly higher than that obtained with 
the treatment of Nishizawa and co-workers. The calculated solubility was also verified 
using a lattice constant determination by XRD and intrinsic coercivity measurement by 
SQUID. 
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